Анализ современного состояния международных образовательных стандартов в области ИТ

В.А. Сухомлин

Проф. МГУ имени М.В. Ломоносова sukhomlin@mail.ru

28 января 2012г., г. Переславль

Стандарты куррикулумов (curriculums) в ИТ-образовании

В условиях глобализации экономики большое значение для подготовки востребованных кадров имеет выработка международных рекомендаций, являющихся ориентиром для университетов

Ответственность за формирования таких ориентиров в области ИТ в виде стандартов учебных программ или куррикулумов (curriculum) несут Ассоциация компьютерной техники (Association for Computing Machinery, ACM) и Компьютерное Сообщество Института инженеров по электронике и электротехнике (Computer Society of the IEEE или IEEE-CS)

История развития куррикулумов:

- Curriculum 68 ACM
- Curriculum 78 ACM
- •Computing Curricula 1991 (СС 1991) АСМ и IEEE
- *Computing Curricula 2001 (CC 2001) ...

Архитектура университетского ИТ-образования

Университетское ИТ-образование

Computing

Computer Engineering

Computer Science

Information Systems
Software Engineering
Information Technology

. . .

Computational Science

applied mathematics)

Bioinformatics, Cheminformatics

Computational chemistry

Computational biology

Computational mathematics

Computational mechanics

Computational physics

High performance computing

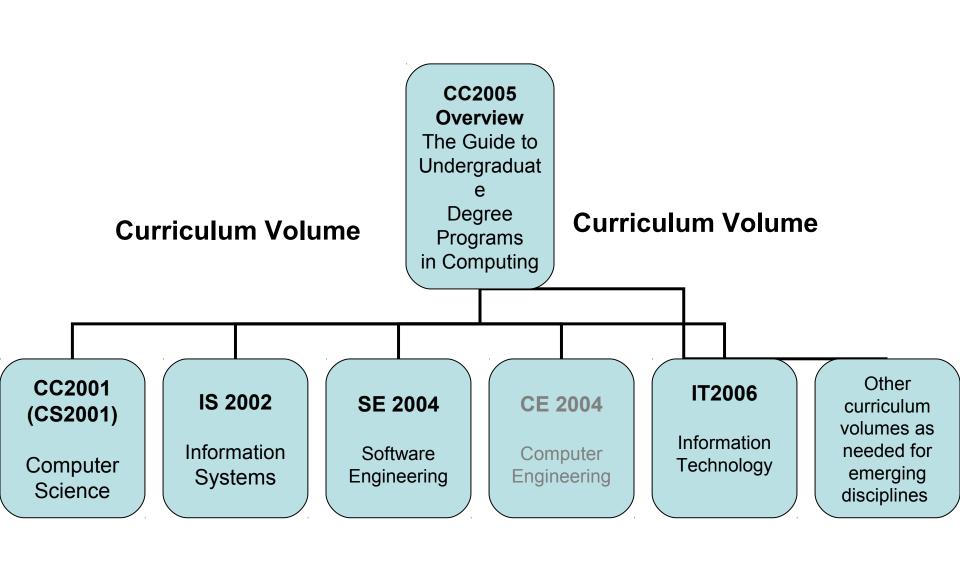
Environmental simulation

Geographic information system

Numerical weather prediction

Pattern recognition

Архитектура компьютинга

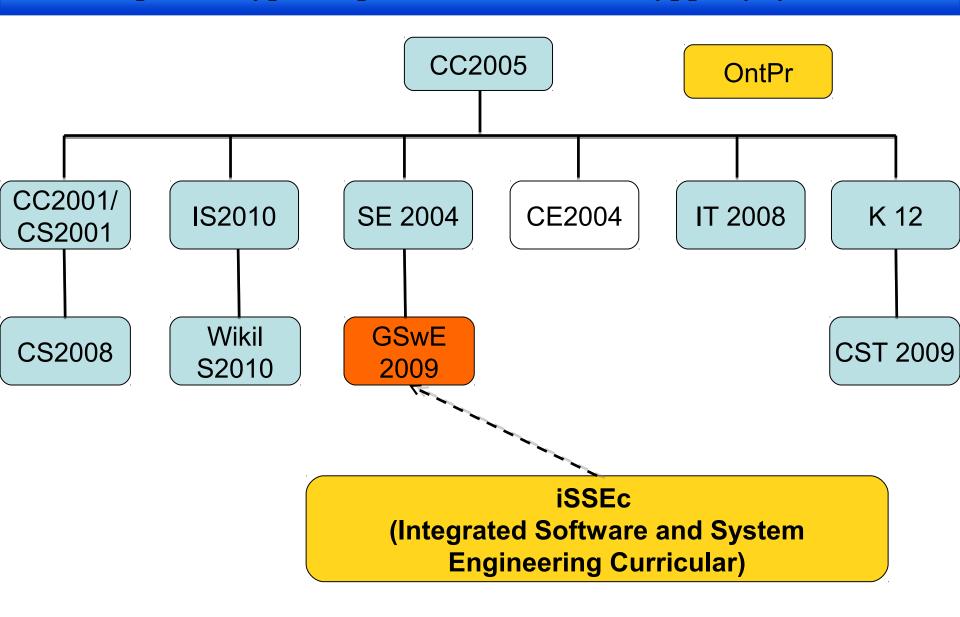

К середине первого десятилетия 21 века была разработана система рекомендаций, включающая объемы знаний для подготовки бакалавров по следующим профилям:

- вычислительная техника (Computer Engineering-CE2004)
- компьютерные науки (Computer Science CS2001)
- информационные системы (Information Systems IS2002)
- программная инженерия (Software Engineering SE2004)
- системы информационных технологий (Information Technology IT2006)

Для профиля IT поясняется, что существуют две трактовки понятия ИТ:

- в широком смысле под **ИТ** понимается весь объем понятия "Computing"
- -в узком смысле под ИТ понимаются собственно системы ИТ, формирующие современную информационную инфраструктуру предприятий

Архитектура компьютинга - СС2005


Современная система куррикулумов

В последующее пятилетие (а процесс развития куррикуломов принял постоянный непрерывный характер и осуществляется на принципах консорциумной стандартизации) практически все указанные выше документы были переработаны и вышли в новых редакциях

Современный стек куррикуломов дисциплины компьютинг включает следующие основные документы:

- Computing Curricula 2005 (CC2005),
- Computer Engineering 2004 (CE2004),
- Computer Science 2008 (CS2008),
- Information Systems 2010 (IS2010),
- Information Technology 2008 (IT2008)
- •Graduate Software Engineering 2009 (GSwE2009) и др.

Архитектура современной системы куррикулумов


Принципы СС2005

- 1) Краткое описание профессиональных характеристик базовых профилей (В СС2005 определены основные профессиональные характеристики каждого из базовых профилей)
- 2) Графическое описание проблемных областей базовых профилей на основе модели пространства задач
- 3) Сравнительный анализ базовых профилей по тематическому содержанию профессиональной подготовки с помощью шкалированной табличной формы ЗАКОН П.ДЕНИНГА (Таблица 1. Список ключевых тем профессиональной подготовки и степень (глубина) их изучения академические цели)
- 4) Описание исходящих профессиональных характеристик выпускников базовых профилей. По аналогии с примененным выше методом шкалирования для моделирования целей обучения по ключевым темам/технологиям предложена система рабочих или исходящих характеристик для выпускников в соответствии с профилем их подготовки.

...организация, аккредитация, качество

Нет ни одного вхождения слова компетенция – competence!

Принципы СС2005

Модель пространства задач

Пространство задач для профиля СЕ

Темы – глубина обучения (академические цели)

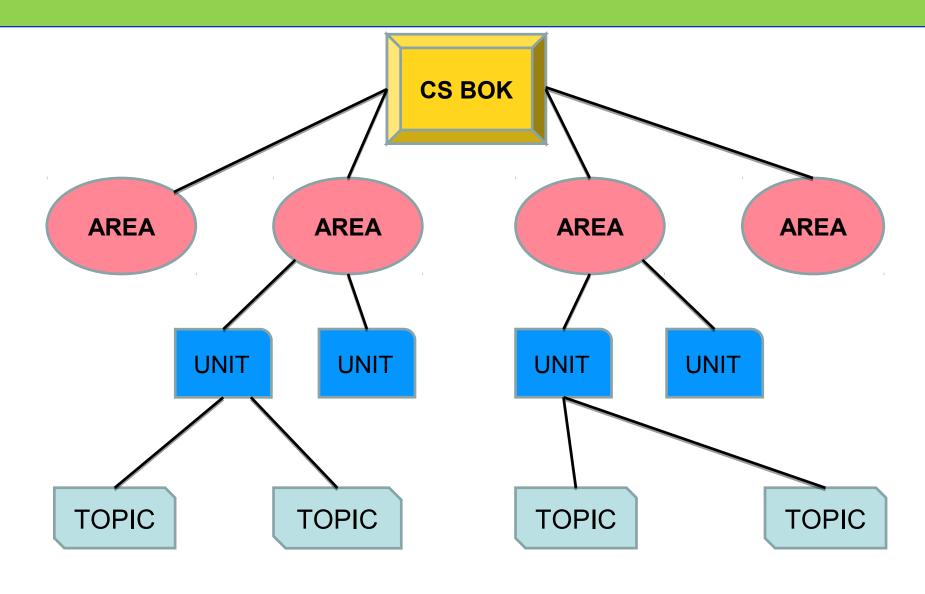
Kanadada Assa	(Œ	C	S	1	S	I	Т	S	E	ſ
Knowledge Area	min	max	ı								
Programming Fundamentals	4	4	4	5	2	4	2	4	5	5	ı
Integrative Programming	0	2	1	3	2	4	3	5	1	3	ı
Algorithms and Complexity	2	4	4	5	1	2	1	2	3	4	ı
Computer Architecture and Organization	5	5	2	4	1	2	1	2	2	4	ı
Operating Systems Principles & Design	2	5	3	5	1	1	1	2	3	4	ı
Operating Systems Configuration & Use	2	3	2	4	2	3	3	5	2	4	ı
Net Centric Principles and Design	1	3	2	4	1	3	3	4	2	4	ı
Net Centric Use and configuration	1	2	2	3	2	4	4	5	2	3	ı
Platform technologies	0	1	0	2	1	3	2	4	0	3	ı
Theory of Programming Languages	1	2	3	5	0	1	0	1	2	4	ı
Human-Computer Interaction	2	5	2	4	2	5	4	5	3	5	ı
Graphics and Visualization	1	3	1	5	1	1	0	1	1	3	ı
Intelligent Systems (AI)	1	3	2	5	1	1	0	0	0	0	ı
Information Management (DB) Theory	1	3	2	5	1	3	1	1	2	5	ı
Information Management (DB) Practice	1	2	1	4	4	5	3	4	1	4	ı
Scientific computing (Numerical mthds)	0	2	0	5	0	0	0	0	0	0	ı
Legal / Professional / Ethics / Society	2	5	2	4	2	5	2	4	2	5	ı
Information Systems Development	0	2	0	2	5	5	1	3	2	4	ı
Analysis of Business Requirements	0	1	0	1	5	5	1	2	1	3	ı
E-business	0	0	0	0	4	5	1	2	0	3	ı
Analysis of Technical Requirements	2	5	2	4	2	4	3	5	3	5	ı
Engineering Foundations for SW	1	2	1	2	1	1	0	0	2	5	ı
Engineering Economics for SW	1	3	0	1	1	2	0	1	2	3	ı
Software Modeling and Analysis	1	3	2	3	3	3	1	3	4	5	ı
Software Design	2	4	3	5	1	3	1	2	5	5	ı
Software Verification and Validation	1	3	1	2	1	2	1	2	4	5	ı
Software Evolution (maintenance)	1	3	1	1	1	2	1	2	2	4	ı
Software Process	1	1	1	2	1	2	1	1	2	5	ı
Software Quality	1	2	1	2	1	2	1	2	2	4	ı
Comp Systems Engineering	5	5	1	2	0	0	0	0	2	3	ı
Digital logic	5	5	2	3	1	1	1	1	0	3	ı
Embedded Systems	2	5	0	3	0	0	0	1	0	4	ı
Distributed Systems	3	5	1	3	2	4	1	3	2	4	ı
Security: issues and principles	2	3	1	4	2	3	1	3	1	3	ı
Security: implementation and mgt	1	2	1	3	1	3	3	5	1	3	ı
Systems administration	1	2	1	1	1	3	3	5	1	2	ı
Management of Info Systems Org.	0	0	0	0	3	5	0	0	0	0	ı
Systems integration	1	4	1	2	1	4	4	5	1	4	ı
Digital media development	0	2	0	1	1	2	3	5	0	1	ı
Technical support	0	1	0	1	1	3	5	5	0	1	ı

Описание исходящих профессиональных характеристик

Area	Performance Capability	CE	CS	IS	IT	SE
Algorithms	Prove theoretical results	3	5	1	0	3
	Develop solutions to programming problems	3	5	1	1	3
	Develop proof-of-concept programs	3 3	5	3	1	
	Determine if faster solutions possible	3	5	1	1	3
Application programs	Design a word processor program	3	4	1	0	4
	Use word processor features well	3	3	5	5 5	3
	Train and support word processor users	2	2	4		2
	Design a spreadsheet program (e.g., Excel)	3 2 2 5	4	1	0	4
	Use spreadsheet features well	2	2	5 4	5	3
	Train and support spreadsheet users	2	2		5 5 3	3 2 5
Computer programming	Do small-scale programming	5	5	3	3	5
	Do large-scale programming	3	4	2	2	5 4
	Do systems programming	4	4	1	1	
	Develop new software systems	3 4	4	3	1	5
	Create safety-critical systems	4	3		0	5
	Manage safety-critical projects	3	2	0	0	5
Hardware and devices	Design embedded systems	5	1	0	0	1
	Implement embedded systems	5	2	1	1	3
	Design computer peripherals	5	1	0	0	1
	Design complex sensor systems	5	1	0	0	1
	Design a chip	5	1	0	0	1
	Program a chip	5 5 5 5 5	1	0	0	1
	Design a computer	5	1	0	0	1
Human-computer interface	Create a software user interface	3	4	4	5	4
3.5	Produce graphics or game software	2	5	0	0	5

Design a human-friendly device

Характерные черты стандартов куррикулумов


- целостность, системность, единая система понятий;
- знание-ориентированность спецификация структуры и собственно объемов знаний (body of knowledge) по профилям подготовки (до уровня тем/подтем) является основным содержанием любого куррикулума;
- единая архитектура представления знаний в виде трехчетырех-уровневой иерархической структуры - на верхнем уровне иерархии - предметные области (areas), которые подразделяются на модули знаний (units), последние в свою очередь разбиваются на темы (topics), в некоторых случаях темы делятся на подтемы (subtopics);
- концепция ядра выделение в ВОК минимально необходимого содержания для всех учебных программ, что обеспечивает единство образовательного пространства, мобильность учащихся, гарантию качественности базовой подготовки;

Модель объема знаний (Structure of the body of knowledge - BOK) для Computing Curricula 2001 Computer Science (или CS2001)

CS BOK организован в виде трех уровневой иерархии:

- на верхнем уровне иерархии расположены предметные области (area disciplinary subfields)
- предметные области подразделяются на тематические модули (units)
- -модули в свою очередь подразделяются на темы (topics)

Архитектура CS BOK (body of knowledge)

Структура ВОК CS2001

- 1.Дискретные структуры (Discrete Structures DS)
- 2.Основы программирования (Programming Fundamentals -PF)
- 3. Алгоритмы и сложность (Algorithms and Complexity AL)
- 4. Архитектура вычислительных систем (Architecture and Organization AR)
- 5.Операционные системы (Operating Systems OS)
- 6.Распределенные вычисления (Net-Centric Computing NC)
- 7.Языки программирования (**Programming Languages** PL)
- 8. Человеко-машинное взаимодействие (Human-Computer Interaction HC)
- 9.Компьютерная графика и визуализация (**Graphics and Visual Computing** GV)
- 10.Искусственный интеллект (Intelligent Systems IS)
- 11.Управление информацией (Information Management IM)
- 12. Социальные и профессиональные вопросы ИТ (Social and

Professional Issues - SP)

- 13. Программная инженерия (Software Engineering SE)
- 14.Вычислительная наука и численные методы (Computational Science and Numerical Methods CN)

Модули и темы ВОК CS2001

Discrete Structures (DS)

- DS1. Functions, relations, and sets [core]
- **DS2. Basic logic [core]**
- **DS3. Proof techniques [core]**
- **DS4.** Basics of counting [core]
- **DS5.** Graphs and trees [core]
- **DS6.** Discrete probability [core]

DS1. Functions, relations, and sets [core]

Minimum core coverage time: 6 hours

Topics:

- Functions (surjections, injections, inverses, composition)
- •Relations (reflexivity, symmetry, transitivity, equivalence relations)
- Sets (Venn diagrams, complements, Cartesian products, power sets)
- Pigeonhole principle
- Cardinality and countability

Learning objectives:

- 1. Explain with examples the basic terminology of functions, relations, and sets.
- 2. Perform the operations associated with sets, functions, and relations...

Figure 5-1. Computer science body of knowledge with core topics underlined

DS, Discrete Structures (43 core hours)	HC. Human-Computer Interaction (8 core hou
DS1, Functions, relations, and sets (6)	HC1. Foundations of human-computer interaction (6)
DS2. Basic logic (10)	HC2. Building a simple graphical user interface (2)
DS3. Proof techniques (12)	HC3. Human-centered software evaluation
DS4. Basics of counting (5)	HC4. Human-centered software development HC5. Graphical user-interface design
DS5. Graphs and trees (4)	HC6. Graphical user-interface programming
DS6. Discrete probability (6)	HC7. HCl aspects of multimedia systems
PF. Programming Fundamentals (38 core hours)	HC6. Graphical user-interface programming HC7. HCl aspects of multimedia systems HC8. HCl aspects of collaboration and communication
PF1. Fundamental programming constructs (9)	GV. Graphics and Visual Computing (3 core ho
PF2. Algorithms and problem-solving (6)	GV1. Fundamental techniques in graphics (2)
PF3. Fundamental data structures (14)	GV2. Graphic systems (1)
PF4. Recursion (5)	GV3. Graphic communication
PF5. Event-driven programming (4)	GV4. Geometric modeling
47 41 44 40 1 5 64 1 5	GV5. Basic rendering
AL. Algorithms and Complexity (31 core hours)	GV6. Advanced rendering
ALI. Basic algorithmic analysis (4)	GV7. Advanced techniques
AL2. Algorithmic strategies (6)	GV8. Computer animation GV9. Visualization
AL3. Fundamental computing algorithms (12)	GV10. Virtual reality
AL4. Distributed algorithms (3)	GV11. Computer vision
AL5. Basic computability (6)	VANDOR VANDONNON IN TO DE PROPERTO
AL6. The complexity classes P and NP	IS. Intelligent Systems (10 core hours)
AI.7. Automata theory AI.8. Advanced algorithmic analysis	IS1. Fundamental issues in intelligent systems (1)
AL9. Cryptographic algorithms	IS2. Search and constraint satisfaction (5)
AL10. Geometric algorithms	IS3. Knowledge representation and reasoning (4)
AL11. Parallel algorithms	IS4. Advanced search
	ISS. Advanced knowledge representation and reasoning
AR. Architecture and Organization (36 core hours)	IS6. Agents IS7. Natural language processing
AR1. Digital logic and digital systems (6)	IS8. Machine learning and neural networks
AR2. Machine level representation of data (3)	IS9. Al planning systems
AR3. Assembly level machine organization (9)	IS10. Robotics
AR4. Memory system organization and architecture (5)	
AR5. Interfacing and communication (3)	IM. Information Management (10 core hours)
AR6. Functional organization (7)	IM1. Information models and systems (3)
AR7. Multiprocessing and alternative architectures (3)	IM2. Database systems (3)
AR8. Performance enhancements	IM3. Data modeling (4)
AR9. Architecture for networks and distributed systems	IM4. Relational databases
OS. Operating Systems (18 core hours)	IM5. Database query languages
OS1. Overview of operating systems (2)	IM6. Relational database design IM7. Transaction processing
OS2. Operating system principles (2)	IM8. Distributed databases
OS3. Concurrency (6)	IM9. Physical database design
OS4. Scheduling and dispatch (3)	IM10, Data mining
OS5. Memory management (5)	1M11. Information storage and retrieval
OS6. Device management	IM12. Hypertext and hypermedia
OS7. Security and protection	IM13. Multimedia information and systems
OS8. File systems	IM14. Digital libraries
OS9. Real-time and embedded systems	SP. Social and Professional Issues (16 core hour
OS10. Fault tolerance	SP1. History of computing (1)
OS11. System performance evaluation	SP2. Social context of computing (3)
OS12. Scripting	SP3. Methods and tools of analysis (2)
NC. Net-Centric Computing (15 core hours)	SP4. Professional and ethical responsibilities (3)
NC1. Introduction to net-centric computing (2)	SP5. Risks and liabilities of computer-based systems (2)
NC2. Communication and networking (7)	SP6. Intellectual property (3)
NC3, Network security (3)	SP7. Privacy and civil liberties (2)
NC4. The web as an example of client-server computing (3)	SP8. Computer crime
NC5. Building web applications	SP9. Economic issues in computing
NC6, Network management	SP10. Philosophical frameworks
NC7. Compression and decompression	
NC8. Multimedia data technologies	SE. Software Engineering (31 core hours)
NC9. Wireless and mobile computing	SE1. Software design (8)
DE D	SE2. Using APIs (5)
PL. Programming Languages (21 core hours)	SE3. Software tools and environments (3)
PL1. Overview of programming languages (2)	SE4. Software processes (2)
PL2. Virtual machines (1)	SE5. Software requirements and specifications (4)
Pl.3. Introduction to language translation (2)	SE6. Software validation (3)
PL4. Declarations and types (3)	SE7. Software evolution (3)
PL5. Abstraction mechanisms (3)	SE8. Software project management (3)
PL6. Object-oriented programming (10)	SE9. Component-based computing
PL7. Functional programming	SE10. Formal methods
PL8. Language translation systems PL9. Type systems	SE11. Software reliability
PL10. Programming language semantics	SE12. Specialized systems development
PL11. Programming language design	CN. Computational Science (no core hours)

Note: The numbers in parentheses represent the minimum number of hours required to cover this material in a lecture

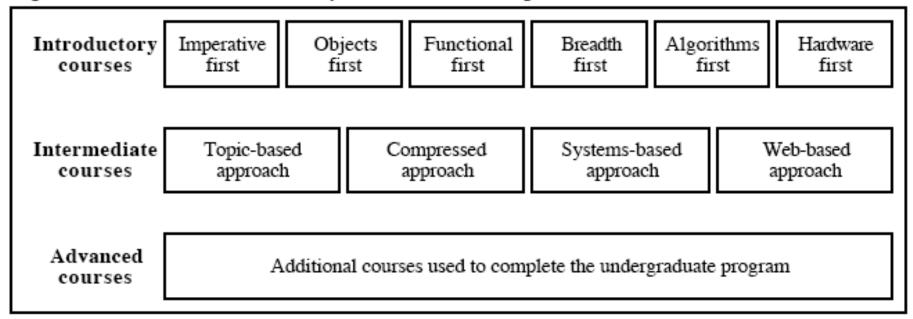
CN. Computational Science (no core hours)
CN1. Numerical analysis
CN2. Operations research
CN3. Modeling and simulation
CN4. High-performance computing

Характерные черты стандартов куррикулумов

- спецификация профессиональных характеристик профилей, системы целей обучения, итоговых профессиональных характеристик выпускников;
- «педагогика» по диверсификации направлений подготовки, составлению учебных планов, компоновки курсов из модулей знаний в соответствии с выбранной педагогической стратегией реализации учебной программы, организации профессиональной практики, реализации процессов обучения;
- -описание учебных курсов и пакетов курсов для различных педагогических стратегий реализации куррикулумов;
- -интеграция усилий академических, промышленных, коммерческих и правительственных организаций в создании и непрерывной актуализации современного методического и научного обеспечения ИТ-образования.

Общая структура типовой учебной программы СС2001

Классификация курсов:


- **вводные** (introductory), читаемые на первом и втором годах обучения
- **промежуточные** или базовые (intermediate) второй-третий годы обучения, закладывающие профессиональную базу
- **спецкурсы** (advanced), профессионально специализированные (модули ядра могут входить в курсы любого уровня)

Стратегии реализации (implementation strategies)

- определяются 6 стратегий реализации вводных курсов (Imperative-first, Objects, Functional, Breadth, Algorithms, Hardware) и 4 тематические стратегии для промежуточных курсов (Imperative First, Compressed, Systems-based, Webbased, Topic-based)

Общая структура типовой учебной программы

Figure 6-1. Course levels and implementation strategies

Structure of the IS Model Curriculum:Information Systems specific courses

Career Track:	A	В	C	D	E	F	G	н	П	J	ĸ		M	N	0	P	a	m	A = Application Developer
Core IS Courses:																		m	B = Business Analyst
Foundations of IS		•		0	•	•	•	•		•		•	•		•	•	•	M	C = Business Process Analyst
Enterprise Architecture	0	0	0	0	0	•	0	0	0	0		0	O	0		0	0	Ш	D = Database Administrator
IS Strategy, Management and Acquisition	0	•	0	0	0	•	0	0	•	0		0	0	0	0	0	0	M	E = Database Analyst
Data and Information Management	•	0	0	0	•	0	0	•	•	0		0	•	0	0	0	0	M	F = e-Business Manager
Systems Analysis & Design	0	•		0	0	0	•	0	0	0	0	0	O	0	0	•	•		G = ERP Specialist
IT Infrastructure	0	0	0		0	0	0		•	•	0	O	0	•	0	0	0		H = Information Auditing and Compliance Specialist
IT Project Management	•	0	0	0	0	0	0	O	0	0		0	O	0		•	•	\prod	I = IT Architect
																		Π	J = IT Asset Manager
Elective IS Courses:																			K = IT Consultant
Application Development		0	0	0	0	0	0	0	0	0	0	0	0	0	0	•		Π	L = IT Operations Manager
Business Process Management		•	•			0	0	0		O	•				0			M	M = IT Security and Flisk Manager
Collaborative Computing						0								0			0	Ш	N = Network Administrator
Data Mining / Business Intelligence		•		•	•	0	0	0	•		0	O	0	0	0		0		O = Project Manager
Enterprise Systems		•		0	0	0	•		0				0	0		I			P = User Interface Designer
Human-Computer Interaction	0					0	0				0					•		M	Q = Web Content Manager
Information Search and Retrieval		0		0	•								0				•		
IT Audit and Controls	0			0	0	O	0				0		O	0	0		0		
IT Security and Risk Management	0			0	0	0	0	•	•	0	0		•	•	0		0		
Knowledge Management	0	•		0		0	0			0									
Social Informatics				and the same					П				0		0	П	П		

Key:

Sgnificant Coverage

Основные решения IS2010

Всего разработано 17 треков-специализаций:

- разработчик приложений
- бизнес-аналитик
- аналитик бизнес-процессов
- аналитик технологий управления инфокоммуникациями
- администратор баз данных
- аналитик баз данных
- менеджер е-бизнеса
- ERP-специалист
- специалист по информационному аудиту и совместимости данных
- разработчик информационных технологий
- менеджер по обработке информационных ресурсов
- консультант по информационным технологиям
- менеджер операций по информационным технологиям
- менеджер по рискам и безопасности информационных технологий
- сетевой администратор
- менеджер проекта
- менеджер веб-контента

ЯДРО в куррикулумах

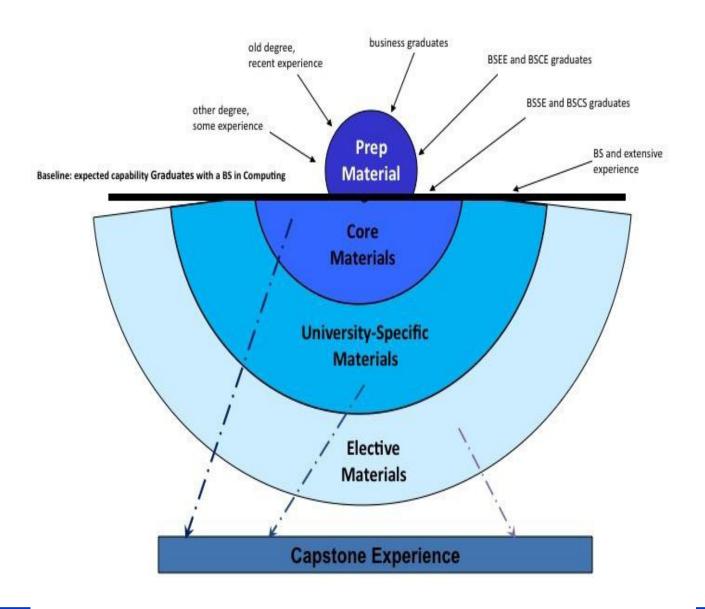
CORE	Лекционные часы	Общие часы	Предметные области	Модули	Темы
CS2008	280	1120	14	65 (132)	300
CE2004)	420	1680	18	128	
IS2010	280	1120	7 (K)	104 (т)	
SE2004	400	1600	10	42	235
IT2008	314	1256	13	81	
GSwE2009	200	800	11		

Стандарты куррикулумов магистратуры

В 2009 г. появился куррикулум для подготовки магистров по профилю программная инженерия - Graduate Software Engineering 2009 (GSwE2009)

GSwE2009 возвестил о переносе в магистратуру технологий разработки учебных программ на базе куррикулумов с их характерными чертами - четким описанием целей и результатов обучения, детальной спецификацией объемов знаний профессионального образовательного поля, выделением обязательного набора знаний (ядра) для всех учебных программ, определением примерного перечня актуальных направлений специализации

GSwE2009 - первый стандарт куррикулума магистерского уровня, созданным в рамках нового амбициозного iSSEc-проекта (Integrated Software & Systems Engineering Curriculum (iSSEc) Project - по интегрированной программной и системной инженерии)

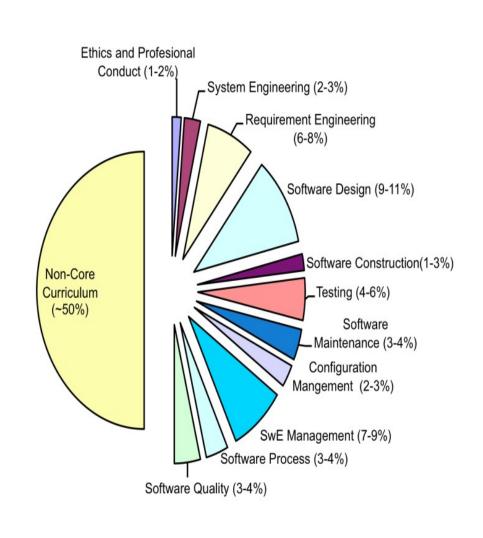

Его основным спонсором является МО США. Активную роль в проекте играют проф. Организации - Международный совет по системной инженерии (INCOSE), промышленную ассоциацию национальной обороны США (NDIA), IEEE-CS, ACM и др.

Включает описание:

- набора исходящих требований к выпускникам или результатов подготовки магистров по программам соответствующим GSwE2009
- **входных требований** к подготовке студентов, желающих обучаться по GSwE2009-программам
- архитектурной модели куррикулума
- **ядра объема знаний** (Core Body of Knowledge CBOK), определяющего обязательный свод знаний для GSwE2009-программ
- модифицированного метода Блума, используемого для спецификации учебных целей при изучении объема знаний
- учебных курсов, содержащих материал CBOK, дополняющий свод знаний SWEBOK, взятый за основу содержания CBOK и др.

- Объем знаний GSwE2009 (и соответственно CBOK) построен в виде **четырехуровневой иерархической** системы структурных элементов (дидактических единиц), включающей:
- предметные области на высшем уровне иерархии,
- модули знаний (второй уровень),
- темы и подтемы (третий и четвертый уровни соответственно)
- С каждой дидактической единицей связан некоторый **индекс**, определяющий необходимый уровень освоения этой единицы учащимся и шкалируемый с помощью модифицированного метода Блума

Архитектура учебных программ



Представленная архитектура куррикулума включает:

- подготовительный материал (preparatory material), владение которым необходимо при поступлении на GSwE2009-программы;
- материалы ядра (core materials), т.е. CBOK;
- материалы университета (university-specific materials);
- материалы по выбору студента (elective materials);
- <u>обязательный capstone-проект</u> (mandatory capstone experience), ниже которого на рисунке простирается пространство профессиональной деятельности магистра

В перечне исходящих требований по программам GSwE2009 первым стоит требование к владению на магистерском уровне, входящими в CBOK знаниями, формируемыми на базе свода знаний SWEBOK, дополненного рядом тем по системной инженерии, информационной безопасности, профессиональной подготовке, человекомашинного интерфейсу, инженерной экономике, управлению рисками, качеству программного обеспечения.

- Объем СВОК оценивается в 200 аудиторных или контактных часов, необходимых для его изучения (т.е. общих часов в четыре раза больше 800), Это эквивалентно 5-ти семестровым учебным курсам по 40 аудиторных часов за семестр (160 общих часов на каждый курс).
- Структура ядра показана на рис. 7 в виде правого полукруга, состоящего из секторов, соответствующих ядерной части некоторой предметной области знаний, при этом размер сектора соответствует доли этой части в процентах относительно самого ядра.
- Всего в ядро входят модули из 11 предметных областей, взятых в основном из SWEBOK:
- A. Ethics and Professional Conduct,
- B. System Engineering,
- C. Requirements Engineering,
- D. Software Design,
- E. Software Construction,
- F. Testing,
- G. Software Maintenance,
- H. Configuration Management (CM),
- I. Software Engineering Management,
- J. Software Engineering Process,
- K. Software Quality.

В заключение

- объем содержащегося в СВОК обязательного для изучения материала в 200 аудиторных часов представляется весьма значительным. Это по существу около 50% всей учебной программы. Что, безусловно, новое веяние в подготовке магистров.
- -анализ содержания CORE показывает исключительно большое значение, которое отводится в GSwE2009 изучению современных международных стандартов, прежде всего в области системной и программной инженерии, включая SWEBOK, CMMI, ISO/IEC 12207, ISO/IEC 15288, пакет стандартов программной инженерии IEEE (порядка 40)
- также от магистров требуется знание и рассмотренных нами образовательных стандартов компьютинга.

ВЫВОДЫ

Все сказанное выше обусловливает необходимость развития национальной образовательной системы с учетом наработанного международного задела. В противном случае российское образование может быстро потерять даже надежды на конкурентоспособность на мировом образовательном рынке

В то же время анализ современного состояния методического обеспечения отечественной высшей школы, в основе которых лежит навязанная системе образования административным путем порочная концепция федерального государственного образовательного стандарта третьего поколения (ФГОС), показывает невозможность адекватного переноса рассмотренных современных образовательных технологий в российское образование

ВЫВОДЫ

Изгнание из ФГОС содержания обучения, т.е. самих знаний, передача которых и есть основная суть образования, и замена этого содержания лозунгами-компетенциями, делает бесполезными ФГОСы для практики, экранирует возможность использования современных технологий управления знаниями, закладывает опасные тенденции, ведущие к разрушению единого образовательного пространства страны, сформированное на базе стандартов второго поколения Последнее негативное явление многократно усиливается «полистандартизацией» в российском образовании – предписанной на законодательном уровне необходимостью элитным университетам, а таких порядка 40, учить по самостоятельно устанавливаемым стандартам

ВЫВОДЫ

Такая работа посильна только консолидированному профессиональному сообществу

Поэтому поиск организационных форм интеграции усилий профессиональной общественности в решении неотложных задач российского образования является актуальной задачей

Только общими усилиями можно развернуть и спасти этот тонущий корабль под названием ВПО!

СПАСИБО!

Основные изменения в ядре объема знаний CS 2008

- «Дискретные структуры (DS)» - больший акцент делается на логичность рассуждения, способность студентов выполнять строго обоснованные и аргументированные доказательства, в то же время снижается внимание к формальным (символическим) доказательствам - «Архитектура и организация ЭВМ (AR)» - введено рассмотрение многоядерных и мультитредовых процессоров - «Распределенные вычисления (NC) - введены новые темы, посвященные сервисно-ориентированной архитектуре и распределенным вычислениям, включая гриды, в то же время темы по коммутации каналов и пакетной коммутации, потокам и дейтаграммам, ПО шлюзов удалены из ядра - «Интеллектуальные системы (IS)» - включены темы, посвященные изучению концепции понимания (perception), онтологий, теории планирования, понятий игрового программного обеспечения